Decision support for irrigation project planning using a genetic algorithm

نویسندگان

  • Sheng-Feng Kuo
  • Gary P. Merkley
  • Chen-Wuing Liu
چکیده

This work presents a model based on on-farm irrigation scheduling and the simple genetic algorithm optimization (GA) method for decision support in irrigation project planning. The proposed model is applied to an irrigation project located in Delta, Utah of 394.6 ha in area, for optimizing economic pro®ts, simulating the water demand, crop yields, and estimating the related crop area percentages with speci®ed water supply and planted area constraints. The user-interface model generates daily weather data based on long-term monthly average and standard deviation data. The generated daily weather data are then applied to simulate the daily crop water demand and relative crop yield for seven crops within two command areas. Information on relative crop yield and water demand allows the genetic algorithm to optimize the objective function for maximizing the projected bene®ts. Optimal planning for the 394.6 ha irrigation project can be summarized as follows: (1) projected pro®t equals US$ 114,000, (2) projected water demand equals 3.03 10 M, (3) area percentages of crops within UCA#2 command area are 70.1, 19, and 10.9% for alfalfa, barley, and corn, respectively, and (4) area percentages of crops within UCA#4 command area are 41.5, 38.9, 14.4, and 5.2% for alfalfa, barley, corn, and wheat, respectively. Simulation results also demonstrate that the most appropriate parameters of GA for this study are as follows: (1) number of generations equals 800, (2) population sizes equal 50, (3) probability of crossover equals 0.6, and (4) probability of mutation equals 0.02. # 2000 Published by Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem

This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

Using of Metaheuristic Water Cycle Algorithm in order to Determine Optimal Crop Cultivation across of Genetic Algorithm and linear programming (Case Study: Varamin Irrigation Network)

Due to water use increasing, attention to optimal water resources allocation is needed. In recent decades, the use of intelligent evolutionary methods for optimization of water allocation was focused more by researchers. The aim of this study is to development on water resources planning model that determined the proper cultivation, optimal exploitation of groundwater and surface water resource...

متن کامل

Production Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)

Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...

متن کامل

An Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model

In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000